
© Peter R. Egli 2015
1/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Peter R. Egli
INDIGOO.COM

INTRODUCTION TO COMMUNICATION MIDDLEWARE
AND WEB SERVICE CONCEPTS

MIDDLEWARE

COMMUNICATION

© Peter R. Egli 2015
2/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Contents
1. What is Middleware?

2. Basic (common) concepts of (distributed) middleware

3. Classification of middleware

4. Comparison of middleware technologies

5. Fallacies of distributed computing

© Peter R. Egli 2015
3/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

What is middleware?
Wikipedia: „Middleware is computer software that connects software components or

applications.”

Middleware (MW) is the software between platform / network and the application.

The term „middleware“ is very fuzzy, so almost everything is middleware.

In this presentation, the focus is on distributed communication.

Platform / OS

Application

Middleware

Platform / OS

Application

Middleware

Network

(TCP/IP)

API

API

API

API

© Peter R. Egli 2015
4/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Basic (common) concepts of (distributed) middleware (1/6)
Middleware can be characterized according to the following criteria:

1. Serialization / marshalling

2. Data presentation

3. Distributed garbage collection

4. Location and discovery

5. Interaction model

6. Wire protocol / encapsulation (transport protocol)

7. Service description

8. Target domain

9. Platform independence

© Peter R. Egli 2015
5/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Basic (common) concepts of (distributed) middleware (2/6)
1. Serialization / marshalling:

Serialization / marshalling converts data (objects, procedures, parameters) into a byte stream

for transmission over the network.

Often serialization and marshalling are used synonymously, but there is a (subtle) difference:

a. Serialization:

Convert objects into a byte stream for transport over network or persistent storage.

b. Marshalling:

Bundle up parameters for a remote method call (serialization of parameters).

x x x x x x x x x object : Class

+ open (...) : int

- close (...)

+ attr1 : String

attr0 : boolean

Send over network

or persist in persistent

storage

Local

object

Unmarshal Marshal

loc_obj.func(arg0, arg1)

arg0 arg1

Remote

object

x x x x x x x x x

Object ID +

class ID

Object ID +

class ID
attr0 attr1

rem_obj.func(arg0, arg1)

© Peter R. Egli 2015
6/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Basic (common) concepts of (distributed) middleware (3/6)
2. Data presentation:

Different middleware technologies present data in different ways to the application:

Sockets  Plain byte stream (TCP) or byte packet (UDP, SCTP)

RPC  Parameters of a procedure / method

DAM  SQL statements, tables, keys

Dist. tuples  Objects

DOT  Objects

MOM  Messages with „opaque“ body (message = data container)

Web service  XML fragment, JSON

3. Distributed garbage collection (GC):

Local objects are garbage collected by the local GC (or the appl. if there is no GC as in C++).

Remote objects may have multiple client objects that access them. Thus remote objects may

only be garbage collected if there are no more references to these objects.

Usually remote garbage collectors use some kind of a reference counter for the remote objects.

Local

object A

Local

object B

Remote

object C GC

Object ID = x Ref. count = 2

Object ID = C Ref. count = 1

Object ID = y Ref. count = 1

© Peter R. Egli 2015
7/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Basic (common) concepts of (distributed) middleware (4/6)
4. Localization & discovery:

Localization & discovery is the process of finding a suitable (concrete) instance of a remote

service , server or object.

Usually this is done through some kind of registry or directory service.

5. Interaction model (request/reply, publish/subscribe):

The interaction model defines the way how the local and remote parties interact.

There are 2 main models:

a. Synchronous request / reply b. Asynchronous messaging

Local

client
Registry

Remote

object

2. Query for object / service x
1. Register

3. Access remote object / service

Object A Object B

Remote call

Return

Object A

blocked Sender

Message queue

Receiver

The receiver receives messages independently

from the sender.

© Peter R. Egli 2015
8/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Basic (common) concepts of (distributed) middleware (5/6)
6. Wire protocol / encapsulation (transport protocol):

The wire protocol defines the encapsulation of the data for the transport over the network.

Serialization / marshalling converts the data into a format conforming to the wire protocol.

Example wire protocols:

CORBA  IIOP

Web services  SOAP / XML over HTTP

RPC  XDR

7. Service description:

Remote services can be described formally with a description language.

Often such a service or interface description is used to create code (local and remote objects).

Example service descriptions:

CORBA  IDL (Interface Description Language)

Web service  WSDL (Web Service Description Language)

RPC  XDR (External Data Representation)

IDL Compiler Code

© Peter R. Egli 2015
9/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Basic (common) concepts of (distributed) middleware (6/6)
8. Target domain:

Even though middlewares typically use TCP/IP as network protocol(s), not all are suited for use

over the Internet due to different reasons:

 Some middlewares are very „chatty“ (a lot of messages going back and forth).

 Middlewares use different port ranges, thus there are potential problems with firewalls.

Target domains for middleware:

a. Internet (WAN)

b. Intranet (local network, LAN)

c. Host

d. Inter-process communication (IPC) between applications

e. Embedded devices (small footprint required, usually in C++)

9. Platform dependence:

Some middleware(s) are only available on a specific platform like Java, other middleware(s)

were designed to be platform independent.

Example platform dependent MW: JMS, RMI (both use the Java platform)

Example platform independent MW: CORBA, web services (.Net and Java web service client

 and server interoperate)

© Peter R. Egli 2015
10/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Classification of middleware (1/5)
The following is a simple classification scheme for middleware technologies.

1. Plain old sockets:

Sockets are the basis of all other middleware technologies.

2. RPC – Remote Procedure Call:

RPC technologies provide a simple means of distributing application logic on different hosts.

 IP

 Socket

 TCP

App

 IP

 Socket

 TCP

App

Network

Client

Client

stub

Network

Server

Server

stub

© Peter R. Egli 2015
11/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Classification of middleware (2/5)
3. TPM - Transaction Processing Monitors:

TPMs are a specialty MW targeted at distributed transactions.

4. DAM - Database Access Middleware:

Databases can be used to share and communicate data between distributed applications.

Client

Client

Client

Client

DB Service

DB Service

DB Service

Network Network
Transaction

Processing

Monitor

Application

Driver manager

JDBC driver Network

Data

source

DB

Application

Driver manager

ODBC driver

Data

source

DB

© Peter R. Egli 2015
12/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Classification of middleware (3/5)
5. Distributed Tuple:

Distributed tuple spaces are implementations of a distributed shared memory space.

6. DOT (Distributed Object Technology) / OOM (Object Oriented Middleware):

DOT extends the object-oriented paradigm to distributed applications.

Client
Client

Javaspaces

service

Javaspaces

service

write(object)

read(object)

Transaction

take(object)

write(object)

notify(object)

Client

object

Object

broker

Server

object

Object bus

Object services

© Peter R. Egli 2015
13/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Classification of middleware (4/5)
7. MOM (Message Oriented Middleware):

In message oriented middleware, messages are exchanged asynchronously between

distributed applications (senders and receivers).

8. Web services:

Web services expose services (functionality) on a defined interface, typically accessible

through the web protocol HTTP.

Sender Receiver

Message queue

receive()
send()

Web

service

Web

service

Middleware

Internal

service

Internal

service

Service

client

Middleware

Internal

service

Internal

service

© Peter R. Egli 2015
14/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Classification of middleware (5/5)
9. Peer-to-peer middleware:

In peer-to-peer middleware, there is no notion of clients and servers. Communication partners

are peers with equal roles in the communication pattern.

10. Grid middleware:

Grid middleware provide computation power services (registration, allocation, de-allocation) to

consumers.

Relay

peer

Peer

Peer

Rendez-

vous

peer

Peer

Peer

The network

Computation

provider

Computation

consumer

Computation

consumer

Computation

provider

Computation

consumer

© Peter R. Egli 2015
15/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Comparison of middleware technologies (1/2)
Comparison of some concepts of middleware technologies

Criteria Sockets Sun-RPC XML-RPC RMI DCOM .Net

remoting

CORBA EJB JMS MSMQ Web

serv.

REST

Serialization /

marshalling

N/a Yes N/a Yes Yes Yes Yes Yes N/a N/a Yes Yes

Data presentation N/a XDR XML Java

interface

Remote

object

.Net

interface

Remote

object

Remote

object

Byte

chunk

Byte chunk SOAP /

XML

XML

Distributed garbage

collection

N/a N/a N/a Yes Yes Yes Yes Yes N/a N/a N/a N/a

Location and discovery N/a RPCBIND N/a JNDI Windows

registry

N/A ORB JNDI JNDI Active

Directory

UDDI N/a

Interaction model Sync. N/a Sync. Sync. Sync. Sync. Sync. Sync. Async. Async. Sync. Sync.

Wire protocol

(encapsulation)

TCP, UDP

or SCTP

XDR XML + HTTP IIOP MSRPC

(=DCE/RPC)

TCP

SOAP+HT

TP

XML

(channel)

IIOP IIOP JMS

specific

Proprietary SOAP +

HTTP

XML +

HTTP

Service description N/a XDR N/a Java

interface

MS IDL .Net

interface

(C#, VB)

IDL Java

interface

N/a N/a WSDL WSDL

WADL

Target domain Host, IPC,

LAN, WAN

Host, LAN Host, IPC,

LAN, WAN

Host,

LAN, IPC

Host, LAN,

IPC

Host, IPC Host, LAN,

IPC

Host, LAN,

IPC

Host,

IPC,

LAN,

WAN

Host, IPC,

LAN, WAN

Host, IPC,

LAN, WAN

Host, IPC,

LAN, WAN

Platform dependence All

platforms

Unix, Linux All

platforms

Java Windows .Net All

platforms

Java (JEE) Java Windows All

platforms

All

platforms

Middleware class Socket RPC RPC DOT DOT DOT DOT DOT MOM MOM WS WS

© Peter R. Egli 2015
16/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Comparison of middleware technologies (2/2)
Description of common middleware services (features):

Service Description

Persistence service (ORM) Support for persistent storage of data

Transaction service Support for atomic (ACID – Atomicity, Consistency, Isolation, Durability) sequences of actions (method calls) that can be rolled back in case of a

failure

Concurrency control /

synchronization

Services allowing to lock resources (transaction locks)

Naming and directory services Registration / location / discovery of objects in the network based on a name (location based on an explicit name or ID)

Trading service Similar to naming and directory service, but location based on operation names, parameters and result types (location based on properties)

Deployment infrastructure Services for the deployment of objects into a run-time environment (e.g. bean container for EJB beans)

RPC support Support for remote method call (call of methods on remote objects)

Life-cycle service Creation / activation, copying, moving, deleting of objects (client- and / or server-activated objects)

Relationship definitions Support for defining explicit relationships between objects

Query service Mapping of objects to relational DBs (see ORM)

Licensing service Controlled access to objects, definition of access control lists for different groups of clients

„Web service“ service Access to objects via some kind of web service (e.g. access through HTTP)

Support for async callbacks /

server push

Possibility to let server send callbacks to client (asynchronous, duplex interfaces)

Event / message service Send / receive events (= messages) asynchronously

Externalization support Possibility to store (=externalize) objects e.g. into the file system and load (=internalize) the object in the same or a different process

Security services Support for identification, authentication, authorization, confidentiality (encryption), data integrity, propagation of credentials

Object pooling Set of initialized (remote) objects kept ready for clients (improve performance, „recycle“ existing objects for new client requests)

Reflection / introspection Possibility to query the available methods on an existing object

Load balancing Distribution of client accesses over a defined number of server components or objects to evenly share the load

© Peter R. Egli 2015
17/17

Rev. 1.80

Introduction to Middleware and Web Services indigoo.com

Fallacies of distributed computing
Common misconceptions or fallacies that architects / system designers should take into

account when designing distributed applications:

 1. The network is reliable.

 2. Latency is zero.

 3. Bandwidth is infinite.

 4. The network is secure.

 5. Topology doesn't change.

 6. There is one administrator.

 7. Transport cost is zero.

 8. The network is homogeneous.

 9. System clocks are identical.

(This list came about at Sun Microsystems by Peter Deutsch et.al.)

Distributing application logic over multiple hosts and servers incurs a non-negligible

performance penalty that has to be taken into account.

