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1. .Net Remoting architecture 
Proxy:  Client-side stub object that connects to the (remote) server object. 

Channel: Transport channel for objects, defined by host + port + endpoint (= remote object 

 service). 

Dispatcher: Part of the .Net remoting infrastructure; dispatches method call to the server 

 object. 

Formatter and Transport sink see below. 
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2. .Net Remoting concepts 
Channel: Comprises a server port number and a formatting (=protocol such as HTTP or TCP) 

Endpoint: Specifies the application that receives the calls (requests) 
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3. Remotable and nonremotable types (1/2) 
Nonremotable types:  

Objects that neither derive from MarshalByRefObject nor are serializable. 

Examples: File handles, sockets, window handles (in general objects that can be used only 

in the local context / application domain). 

 

Remotable types: 

 1. Reference type objects: 

 Objects that derive from MarshalByRefObject are remotable. 

 The remote objects are marshalled by reference. 

 The client obtains a local reference object (proxy) to the remote server object. 
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3. Remotable and nonremotable types (2/2) 
 2. Value objects: 

 Objects that are serializable can be transferred into a different application domain. 

 Serializable objects must be „tagged“ with the attribute [Serializable]. 

 Additionally serializable objects may implement the ISerializable interface and  

 provide a custom serialization (e.g. add some logging info to the serialized object 

 stream). 
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4. .Net Remoting Server Object Activation Types (1/3) 
Activation = creation and initialization of objects. 

Activation of marshal by value types (Serializable): 

Value type objects are activated through the de-serialization on the server side. 

 

Activation of MarshalByRefObject types: 

 a. Client activated object (CAO): 

• Object is activated by the client, transferred to the server and the called method 

executed on the server side. 

• Server object may retain state information between successive calls (stateful session). 
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4. .Net Remoting Server Object Activation Types (2/3) 
 b. SAO - Server Activated Object (1/2): 

• SAO call semantics is stateless (no session semantics between client and server 

object possible). 

   Called „well-known“ types 

   Published as an URI 

   Server activates the objects and the client „connects“ to these. 

   2 types of server-activated objects 

   Singleton objects: 

    1 global instance for all clients and for all remote object calls 

    Created when the first client accesses the server object. 

    Server registration as singleton: 
   RemotingConfiguration.RegisterWellKnownServiceType( 

    typeof( SomeType ), "SomeURI", WellKnownObjectMode.Singleton ); 
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4. .Net Remoting Server Object Activation Types (3/3) 
 b. SAO - Server Activated Object (2/2): 

   Single-call objects: 

    Individual object for each client method call. 

    Every method call is executed on a new server object instance, 

   even if the call is made on the same client proxy object. 

    Server registration as single-call object: 
   RemotingConfiguration.RegisterWellKnownServiceType( 

    typeof( SomeType ), "SomeURI", WellKnownObjectMode.SingleCall ); 
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5. .Net remoting object lifetime control 
SAO single-call objects:   Server object lives for 1 call only 

SAO singleton and CAO objects:  Lifetime managed by the Lease Manager 

 

The Lease Manager decides if a remote object (server object) can be marked for deletion 

(actual deletion is the job of the GC). 

The Lease Manager contacts a sponsor in order to determine if a remote object can be marked 

for deletion or if the lifetime of the object should be extended. 

• Flexible design where client and server object lifetime are de-coupled. 

• Lifetime of objects that are costly to create (lots of initialization etc.) can be given long 

lifetimes. 

• Objects that hold precious resources may be given short lifetimes (free resources quickly). 
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6. .Net remoting channel 
.Net remoting channels are complex object-chains with at least 2 so called sinks (message 

processing objects): 

 a. Formatter sink: Convert the message or object to be transported to the required 

 wire protocol (binary or SOAP) 

 b. Transport sink: Mapping of the serialized message stream into a transport 

 connection (binary formatter: plain TCP, SOAP: HTTP) 

 

The programmer may add additional sink objects (e.g. logging or filtering sink object that logs 

each message passing by). 

Source: http://msdn.microsoft.com/en-us/library/tdzwhfy3(VS.71).aspx 
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Assembly mscorlib.dll (.Net  
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7. Assembly with remoting objects (1/2) 
Both client and server must have the same assembly (.Net library in the form of a DLL or 

executable) containing the shared interface. Both client and server must be linked with an 

identical assembly containing the shared interface; only sharing the shared interface on 

source level does not work (.Net remoting run-time throws an exception). 

 

1. SAO scenario: 

The shared assembly may only contain the interface (only minimal assembly with the shared 

interface needs to be deployed). The server implementation (class CalcServer) is completely 

hidden to the client. 
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Assembly mscorlib.dll (.Net  

system assembly) 

7. Assembly with remoting objects (2/2) 
2. CAO scenario: 

Remotable object that extends MarshalByRefObject must be in the shared assembly because 

it is created / activated by the client, but executed on the server; so both client and server  

need the CalcServer class / object. 
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8. Configuration files instead of programmatic creation of objects (1/2) 
.Net remoting allows using XML-files for configuring various settings on the server and client 

side, e.g. port numbers and formatters. 

Advantage: Meta-programming without the need to change the code. 

Disadvantage: If things don‘t work as expected debugging of configuration in XML-files is 

difficult (Visual Studio does not provide help for creating configuration files). 
 

Example server config file: 

 
<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

  <system.runtime.remoting> 

    <application> 

      <service> 

        <wellknown mode="SingleCall" type="ICalc.CalcServer, ICalc" objectURI="ICalc.CalcServer"/> 

      </service>       

      <channels> 

        <channel ref="tcp" port="60000" bindTo="127.0.0.1"> 

          <serverProviders> 

            <formatter ref="binary" typeFilterLevel="Full"/> 

          </serverProviders> 

        </channel> 

      </channels> 

    </application> 

  </system.runtime.remoting> 

</configuration> 
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8. Configuration files instead of programmatic creation of objects (2/2) 
Example client config file: 
<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

  <system.runtime.remoting> 

    <application> 

      <client> 

        <wellknown type="ICalc.CalcServer, ICalc“ 

          url="tcp://127.0.0.1:60000/ICalc.CalcServer.soap"/> 

      </client>       

    </application> 

  </system.runtime.remoting> 

</configuration> 

 



© Peter R. Egli 2015 
16/16 

Rev. 1.40 

Microsoft .Net Remoting indigoo.com 

 

 

 

Async 

delegate 

9. Asynchronous remoting 
Problem: Server method execution may take considerable time during which the client is 

blocked (waits for the response). 

Solution: Use of standard asynchronous delegates of .Net 

 

 Further decoupling of client and server. 

 Similar to asynchronous message oriented interaction between client and server. 
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