
© Peter R. Egli 2015
1/29

Rev. 2.20

SOAP & WS-* indigoo.com

OVERVIEW OF WS-* SOAP-BASED
WEB SERVICE STANDARDS

PETER R. EGLI
INDIGOO.COM

SOAP / WS-*

© Peter R. Egli 2015
2/29

Rev. 2.20

SOAP & WS-* indigoo.com

Contents
1. Stack of WS-standards

2. WS Publish / subscribe with WS-Eventing

3. WS-Policy / WS-PolicyAttachment

4. Web service security

5. Web service reliability / QoS

6. WS-Addressing

7. WS-Coordination

8. WS-MetadataExchange

9. SOAP-WS versus REST-WS

© Peter R. Egli 2015
3/29

Rev. 2.20

SOAP & WS-* indigoo.com

1. Stack of WS-standards (1/2)
The W3C and OASIS WS-stack provide a framework / toolbox for constructing web service

architectures.

Management Business Processes

Security Reliability Transactions

Description and Discovery

Messaging

Transports

Metadata

 SOAP

 WS-Addressing

 WS-Eventing

 MTOM (optimized

transmission binary data)

WS-ReliableMessaging

 WS-Security

 WS-Trust

 WS-SecurityPolicy

 WS-SecureConversation

 WS-Federation

 WS-Privacy

 WS-Coordination

 WS-AtomicTransaction

 WS-BusinessActivity

 WS-Policy

 WS-PolicyAssertions

 WS-PolicyAttachment

 WS-Discovery

 WS-MetadataExchange

 WS-Management

 WS-Transfer
WS-BPEL

 HTTP

 JMS

 SMTP

 ...

WSDL

UDDI

WS stack

© Peter R. Egli 2015
4/29

Rev. 2.20

SOAP & WS-* indigoo.com

1. Stack of WS-standards (2/2)

Aspect Standard Description

Management WS-Management Web services for managing IT resources (servers, devices, applications etc.); alternative to SNMP or NetConf

WS-Transfer Defines the transfer of XML-based resources from a server to another server

Reliable messaging WS-ReliableMessaging Protocol for the reliable delivery of SOAP messages (at-most-once semantic, in-order delivery)

Business processes WS-BPEL (BPEL4WS) Defines the interaction of web services with business processes

Metadata WS-Policy Defines how a web service advertises its policies on security, QoS etc.

WS-PolicyAssertions Represents an individual preference, requirement or capability; a policy is composed of multiple policy assertions

WS-PolicyAttachment Binds a policy to a subject (= typically a web service)

WS-Discovery Defines a web service multicast discovery protocol to locate web services (IPv4 address 239.255.255.250 port 3702)

WS-MetadataExchange Allows the retrieval of metadata of a web service endpoint (e.g. web service policies, WSDL file from server etc.)

Transactions WS-Coordination Protocols that coordinate the actions of distributed applications (web services)

WS-AtomicTransaction Defines protocols for web service transactions (completion, volatile two-phase commit, durable two-phase commit)

WS-BusinessActivity Defines business activity coordination

Security WS-Security Security protocol for web services

WS-Trust Protocol for establishing trust relationship between web service endpoints (consumers, providers) using tokens

WS-SecurityPolicy Defines security policy assertions (capabilities, requirements, preferences with regard to security)

WS-SecureConversation Protocol for securing entire conversations / sequences of messages (WS-Trust encrypts single messages with a token)

WS-Federation

Identity federation for web services; allows different security realms (different organizations) to share security information on

identities

WS-Privacy

Defines privacy assertions that are embedded into web service policy descriptions (defines which data may be accessed)

(see example http://www.w3.org/TR/P3P/#Example_policy)

Messaging WS-Addressing Protocol for communicating web service address information (web service endpoint address)

WS-Eventing Subscribe / publish to web services to receive notifications / events

http://www.w3.org/TR/P3P/

© Peter R. Egli 2015
5/29

Rev. 2.20

SOAP & WS-* indigoo.com

2. WS Publish / subscribe with WS-Eventing (1/3)
WS-Eventing defines a protocol to subscribe to a web service to receive events from that

service.

N.B.: The event source is not necessarily the same application as the event subscriber

(subscriber performs subscription on behalf of event sink).

2 types of messages:

1 Subscription management messages:

 1a Subscribe (SESO: Event notification subscription)

 1c GetStatus (SSM: Get status information of existing subscription)

 1b Renew (SSM: Renewal of existing event notification)

 1d Unsubscribe (SSM: Unsubscribe, subscriber initiated)

 1e Subscription end (ESOS: Termination of existing subscription)

2 Notification messages (ESOESI)

Event source

(ESO)

Subscription

manager

(SM)

Subscriber

(S)

Subscribe

Events /

notifications

Delegation of

subscription

management

Subscription

management:

GetStatus, Revew, Unsubscribe

Event sink

(ESI)

Subscription end

© Peter R. Egli 2015
6/29

Rev. 2.20

SOAP & WS-* indigoo.com

Subscription action

2. WS Publish / subscribe with WS-Eventing (2/3)
Example subscription message:
<s12:Envelope

 xmlns:s12="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

 xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing"

 xmlns:ew="http://www.example.com/warnings" >

 <s12:Header>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe

 </wsa:Action>

 <wsa:MessageID>

 uuid:d7c5726b-de29-4313-b4d4-b3425b200839

 </wsa:MessageID>

 <wsa:ReplyTo>

 <wsa:Address>http://www.example.com/MyEventSink</wsa:Address>

 </wsa:ReplyTo>

 <wsa:To>http://www.example.org/oceanwatch/EventSource</wsa:To>

 </s12:Header>

 <s12:Body>

 <wse:Subscribe>

 <wse:Delivery>

 <wse:NotifyTo>

 <wsa:Address>

 http://www.example.com/MyEventSink/OnStormWarning

 </wsa:Address>

 <wsa:ReferenceProperties>

 <ew:MySubscription>2597</ew:MySubscription>

 </wsa:ReferenceProperties>

 </wse:NotifyTo>

 </wse:Delivery>

 </wse:Subscribe>

 </s12:Body>

</s12:Envelope>

Event sink to receive notifications, identified

with WS-Addressing element

Source: http://www.w3.org/Submission/WS-Eventing/#Example

© Peter R. Egli 2015
7/29

Rev. 2.20

SOAP & WS-* indigoo.com

2. WS Publish / subscribe with WS-Eventing (3/3)
Example notification message:
<s12:Envelope

 xmlns:s12="http://www.w3.org/2003/05/soap-envelope"

 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

 xmlns:ew="http://www.example.com/warnings"

 xmlns:ow="http://www.example.org/oceanwatch" >

 <s12:Header>

 <wsa:Action>

 http://www.example.org/oceanwatch/2003/WindReport

 </wsa:Action>

 <wsa:MessageID>

 uuid:568b4ff2-5bc1-4512-957c-0fa545fd8d7f

 </wsa:MessageID>

 <wsa:To>http://www.other.example.com/OnStormWarning</wsa:To>

 <ew:MySubscription>2597</ew:MySubscription>

 <ow:EventTopics>weather.report weather.storms</ow:EventTopics>

 </s12:Header>

 <s12:Body>

 <ow:WindReport>

 <ow:Date>030701</ow:Date>

 <ow:Time>0041</ow:Time>

 <ow:Speed>65</ow:Speed>

 <ow:Location>BRADENTON BEACH</ow:Location>

 <ow:County>MANATEE</ow:County>

 <ow:State>FL</ow:State>

 <ow:Lat>2746</ow:Lat>

 <ow:Long>8270</ow:Long>

 <ow:Comments xml:lang="en-US" >

 WINDS 55 WITH GUSTS TO 65. ROOF TORN OFF BOAT HOUSE. REPORTED

 BY STORM SPOTTER. (TBW)

 </ow:Comments>

 </ow:WindReport>

 </s12:Body>

</s12:Envelope>

Source: http://www.w3.org/Submission/WS-Eventing/#Example

© Peter R. Egli 2015
8/29

Rev. 2.20

SOAP & WS-* indigoo.com

3. WS-Policy / WS-PolicyAttachment (1/3)
WS-Policy allows web services to advertise XML-representations of their policies (e.g. security,

or Quality of Service) and web service consumers to specify their policy requirements.

Terminology / model:

• Policy Set of information being expressed as policy assertions.

• Policy Assertion Represents an individual preference, requirement, capability.

• Policy Expression Set of one or more policy assertions, expressed in XML.

• Policy Subject An entity to which a policy expression can be associated (typically

 a web service or a web service endpoint).

• Policy Attachment Describes to which element a policy applies. A policy may be

 placed directly into an element it applies to or be referenced from

 an element. The attachment is described by WS-PolicyAttachment.

Policy

Policy assertion

Policy assertion

Policy assertion

Policy assertion

Web service

Subject

Policy attachment

© Peter R. Egli 2015
9/29

Rev. 2.20

SOAP & WS-* indigoo.com

3. WS-Policy / WS-PolicyAttachment (2/3)
Examples:
<sp:TransportBinding>

 <Policy>

 <sp:TransportToken>

 <Policy>

 <sp:HttpsToken>

 <wsp:Policy/>

 </sp:HttpsToken>

 </Policy>

 </sp:TransportToken>

 <sp:AlgorithmSuite>

 <Policy>

 <sp:Basic256Rsa15/>

 </Policy>

 </sp:AlgorithmSuite>

 </Policy>

</sp:TransportBinding>

<wsp:Policy

xmlns:rmp=http://schemas.xmlsoap.org/ws/2005/02/rm/policy

xmlns:wsp=http://schemas.xmlsoap.org/ws/2004/09/policy

xmlns:wsu=http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

wsu:Id="RmPolicy" >

 <rmp:RMAssertion>

 <rmp:InactivityTimeout Milliseconds="600000" />

 <rmp:BaseRetransmissionInterval Milliseconds="3000" >

 <rmp:ExponentialBackoff />

 <rmp:AcknowledgementInterval Milliseconds="200" />

 </rmp:RMAssertion>

</wsp:Policy>

Policy specifies that HTTPs is required as transport.

Policy defines that HTTPs is to use the RSA15 key wrap algorithm

with 256 bit basic encryption algorithm.

Properties for reliable messaging.

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/ws/2004/09/policy
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

© Peter R. Egli 2015
10/29

Rev. 2.20

SOAP & WS-* indigoo.com

3. WS-Policy / WS-PolicyAttachment (3/3)
WS-PolicyAttachment defines how to associate a policy with a subject.

Example:
<wsp:PolicyAttachment>

 <wsp:AppliesTo>

 <wsa:EndpointReference xmlns:indigoo="…">

 <wsa:Address>http://www.indigoo.example.com/wsa</wsa:Address>

 <wsa:PortType>indigoo:InventoryPortType</wsa:PortType>

 <wsa:ServiceName>indigoo:InventoryService</wsa:ServiceName>

 </wsa:EndpointReference>

 </wsp:AppliesTo>

 <wsp:PolicyReference URI="http://www.indigoo.example.com/policies#RmPolicy" />

</wsp:PolicyAttachment>

Subject to which policy applies.

Referenced policy.

© Peter R. Egli 2015
11/29

Rev. 2.20

SOAP & WS-* indigoo.com

4. Web service security (1/8)
General security aspects:

Authentication:

 Ensure the identity of a user.

Authorization:

 Ensure that only authorized users can access an application.

 Control the level of access (read/write, access to which data / resources).

Confidentiality:

 Keep data secret for unauthorized parties (machines, users).

Integrity:

 Verify that data has not been changed by unauthorized third parties in transmit.

Non-repudiation:

 Ensure that the sender of a message can not deny having sent it.

© Peter R. Egli 2015
12/29

Rev. 2.20

SOAP & WS-* indigoo.com

4. Web service security (2/8)
Scenarios for security (1/2)

1. Security on application layer:

Messages are secured on the application layer, i.e. entire SOAP messages are encrypted and

authenticated by the web service stubs / skeletons on the service client and service provider.

 End-to-end security.

 Web intermediaries (caches, proxies, logging servers etc.) excluded (cannot be used).

 Complete web service architecture with proxies etc. not possible.

 Recommended in closed-world scenarios only (company-internal).

Service

client

Service

provider
Intermediary Intermediary

Secured communication, but intermediaries excluded

© Peter R. Egli 2015
13/29

Rev. 2.20

SOAP & WS-* indigoo.com

4. Web service security (3/8)
Scenarios for security (2/2)

2. Security on transport layer:

SOAP intermediaries (caches etc.) along the path unpack / decrypt SOAP messages on receive

and encrypt the messages again on transmit.

Normally HTTPs is used for securing the SOAP message transmission.

 Intermediaries are possible.

 Security not sufficient (HTTPs only secures hop-to-hop connection, but not the entire

 path.

 Required but not sufficient for achieving reasonable security.

3. Message-level security control with WS-Security:

WS-Security affords fine-grain security control to achieve the required security and make it

possible to use web intermediaries (proxies, caches etc.).

Service

client

Service

provider
Intermediary Intermediary

Not the entire path is secured.

Secured by HTTPs Secured by HTTPs Secured by HTTPs

© Peter R. Egli 2015
14/29

Rev. 2.20

SOAP & WS-* indigoo.com

4. Web service security (4/8)
WS-Security (1/2):

 WS-Security is a framework for building security protocols.

It includes:

 a. Authentication and Integrity (signature).

 b. Confidentiality (encryption).

 c. Propagation of security tokens.

 d. Support for pluggable security algorithms (e.g. for encryption).

 e. Encryption (control of encryption; the encryption algorithm itself is outside the scope of

 WS-Security).

 f. Digest (procedure for calculating message digests for authentication).

 g. Signature (message integrity).

© Peter R. Egli 2015
15/29

Rev. 2.20

SOAP & WS-* indigoo.com

4. Web service security (5/8)
WS-Security (2/2):

The WS-Security security model:

Entity Description

Claim

A claim is a declaration made by an entity (e.g. name, identity, key, group, privilege, capability, etc).

Example: Client claims to be the one with identity <identity>. This has to be verified in the process

„Claim confirmation“.

Claim confirmation A claim confirmation is the process of verifying that a claim applies to an entity.

Subject An item about which the claims expressed in the security token apply (e.g. a web service).

Security token A security token represents a collection of claims.

Policy The claims and related information that web services require in order to process messages.

Service

client

Service

provider

Security

token

service

Policy

Policy

Policy

Security

Token
Claims

Security

Token
Claims

Security

Token
Claims

© Peter R. Egli 2015
16/29

Rev. 2.20

SOAP & WS-* indigoo.com

4. Web service security (6/8)
WS-Trust (1/3):

WS-Trust is an add-on „standard“ that builds on WS-Security and adds the possibility to

establish trust relationship between web service client and service by exchanging security

tokens (e.g. SAML tokens).

Problem:

Trust relationship is an intrinsic security problem of networked entities.

Example:

A trusts B, C trusts B, but C does not trust A, A does not trust C.

How to establish trust between A and C?

Solution for WS:

B (security token service) issues a security token for A (service client) and C (service provider).

B (security token service) verifies the token on request of A (service client) & C (service

provider).

The security token service acts like a person of trust to establish the trust relation between

service client (A) and service provider (C).

A

B

C

Trust Trust

No Trust

© Peter R. Egli 2015
17/29

Rev. 2.20

SOAP & WS-* indigoo.com

4. Web service security (7/8)
WS-Trust (2/3):

WS-Trust protocol:

1. The client initiates a token request to the security token service.

2. The security token service returns a new security token.

3. The client sends a SOAP message (to access the service) along with the token to the service

provider.

4. Before processing the SOAP message, the service provider sends the token to the security

token service for verification.

5. The security token service sends back an confirmation of the validity of the token.

6. Now the trust relationship is established. The service provider processes the SOAP

message.

Service

client

Security

token

service

Service

provider

Token

Scope of trust

SOAP message

with token

Token
Scope of trust

Token

?

Token

1

2

3

4

5

© Peter R. Egli 2015
18/29

Rev. 2.20

SOAP & WS-* indigoo.com

Lifetime elements defines validity period of token.

4. Web service security (8/8)
WS-Trust (3/3)

WS-Trust example:

 <wst:RequestSecurityTokenResponse>
 <wst:TokenType>

 http://example.org/mysecuritytoken

 </wst:TokenType>

 <wsp:AppliesTo>

 <wsa:EndpointReference>

 <wsa:Address>http://example.org/webservice</wsa:Address>

 </wsa:EndpointReference>

 </wsp:AppliesTo>

 <wst:Lifetime>

 <wsu:Created>2004-05-06T22:04:34</wsu:Created>

 <wsu:Expires>2004-05-07T10:04:34</wsu:Expires>

 </wst:Lifetime>

 <wst:RequestedSecurityToken>

 <p:MySecurityToken xmlns:p='http://example.org/mytoken' >

 <!-- Token data -->

 </p:MySecurityToken>

 </wst:RequestedSecurityToken>

 <wst:RequestedProofToken>

 <xenc:EncryptedKey xmlns:xenc='http://www.w3.org/2001/04/xmlenc#' >

 <xenc:EncryptionMethod

 Algorithm='http://www.w3.org/2001/04/xmlenc#kw-rsa-oaep-mgf1p' />

 <ds:KeyInfo>

 <wss:SecurityTokenReference>

 <wss:Reference URI='#You' ValueType='http://docs.oasis-

 open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3' />

 </wss:SecurityTokenReference>

 </ds:KeyInfo>

 <xenc:CipherData xmlns:xenc='http://www.w3.org/2001/04/xmlenc#' >

 <xenc:CipherValue>1yLLyrm3qudM1b89dYsRGw==</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedKey>

 </wst:RequestedProofToken>

 </wst:RequestSecurityTokenResponse>

Security token data.

© Peter R. Egli 2015
19/29

Rev. 2.20

SOAP & WS-* indigoo.com

5. Web service reliability / QoS (1/2)
Problems with HTTP / SMTP or other protocols used for SOAP message transport:

 1. Messages arrive 0...n times (there is no guarantee of delivery or prevention of duplicates

 depending on the transport binding).

 2. Messages may not arrive in order (messages may be re-ordered somewhere in the

 transmission path, e.g. because multiple threads in SOAP processor work in parallel,

 receive messages and process them).

Solution 1:

 Problems / exceptions are handled in the application.

 But: Duplication of functionality common to almost all applications.

Solution 2:

 Use WS-ReliableMessaging to achieve web service QoS (Quality of Service).

 Exactly-once transmission semantics (retransmission of lost messages, no duplicates).

 In-order delivery.

© Peter R. Egli 2015
20/29

Rev. 2.20

SOAP & WS-* indigoo.com

5. Web service reliability / QoS (2/2)
WS-ReliableMessaging (WS-RM) messaging model:

The source (web service client) sends its SOAP message to an intermediary „RM Source“

which forwards the message reliably to the „RM Destination“.

The „RM Destination“ delivers the message to the final application destination (web service).

Possible WS-RM delivery assurances:

1. AtLeastOnce.

2. AtMostOnce.

3. ExactlyOnce.

4. InOrder (can be combined with 1. – 3.).

Reliable and in-order delivery

of messages between

RM (Reliable Messaging) entities.

Application

Source

Application

Destination

RM

Source

RM

Destination

Send Deliver

Transmit

Acknowledge

© Peter R. Egli 2015
21/29

Rev. 2.20

SOAP & WS-* indigoo.com

6. WS-Addressing (1/3)
Problems with message routing in web architectures:

When only using the <endpoint> information in the WSDL containing an URL for addressing a

web service, the destination and reply-to address are the same and the web service provider

has to send back the SOAP-response message to the requestor address. So the response must

be sent in the same HTTP connection as the request was received by the service.

Sometimes it is desireable to use a different transport for the response and maybe also specify

a different target address for fault messages.

 SOAP does not specify the destination address (service address).

 SOAP does not specify how and where to return a response.

 SOAP does not specify how and where to report errors.

Solution 1:

Add the extra addressing information as a parameter to the request URL (?replyTo=<URL>).

But:

Service is still bound to HTTP as transport protocol (it is not possible to use SMTP or JMS).

And: This is not SOAP-ish, it is RESTful!

© Peter R. Egli 2015
22/29

Rev. 2.20

SOAP & WS-* indigoo.com

6. WS-Addressing (2/3)
Solution 2:

Use of WS-Addressing which allows to put endpoint references (EPR) into SOAP headers for

specifying:

a. From address (address as a URL where the request came from).

b. To address (address as a URL to identify a specific instance of the service provider).

c. ReplyTo address (address as a URL where to send the response).

d. FaultTo address (address as a URL where to send fault messages).

EPRs allow to address individual instances of web services, e.g. individual resources (like

REST does with the URL query string).

With WS-Addressing it is possible to use different transports for the request and response

messages, e.g. request in HTTP, response in SMTP or JMS message.

This further improves the temporal and protocol-decoupling of service client and service

provider:

Service

client

Service

provider

Intermediary

SOAP request in HTTP transport

SOAP response in JMS transport

to intermediary

Final delivery of SOAP

message in SMTP transport

© Peter R. Egli 2015
23/29

Rev. 2.20

SOAP & WS-* indigoo.com

EPR address where the service should send respones.

6. WS-Addressing (3/3)
WS-Addressing example:
<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

<S:Header>

 <wsa:MessageID>uuid:6B29FC40-CA47-1067-B31D-00DD010662DA</wsa:MessageID>

 <wsa:ReplyTo>

 <wsa:Address>http://indigoo.example/client1</wsa:Address>

 </wsa:ReplyTo>

 <wsa:To>http://indigoo.example/Purchasing</wsa:To>

 <wsa:Action>http://indigoo.example/SubmitPO</wsa:Action>

</S:Header>

<S:Body>

...

</S:Body>

EPR address of the ultimate receiver of the message

(web service instance to process the message).

Action from HTTP-header mapped to SOAP-header

so that the service becomes fully transport-independent.

© Peter R. Egli 2015
24/29

Rev. 2.20

SOAP & WS-* indigoo.com

7. WS-Coordination (1/4)
WS-Coordination is a framework for defining protocols that coordinate the actions of

distributed applications (web services clients, service providers, intermediaries etc.).

WS-Coordination itself is only a framework and only works in conjunction with concrete

standards like WS-Transaction and WS-AtomicTransaction.

The core concept of WS-Coordination is a „coordination context“ that is created each time a

new activity is started in which multiple applications are involved and need to be coordinated in

a controlled way (workflow with defined sequences of actions).

Example: Flight booking involving several web services (flight list, reservation, money transfer

etc.).

Participants in a coordinated activity use coordinators to have the activity run in a coordinated

/ well-defined way (proper sequence of actions).

Coordinator

Activation

service (AS)

Registration

service (RS)

Protocol

service Y (PS)

Protocol

service X (PS)

Coordination protocol X Coordination protocol Y

Create coordination

context

Register

© Peter R. Egli 2015
25/29

Rev. 2.20

SOAP & WS-* indigoo.com

7. WS-Coordination (2/4)
WS-Coordination architecture:

A. Centralized coordinator:

 All services share a common coordinator.

B. Distributed coordinator:

Each service has its own coordinator. The coordinators run the coordination protocol between

them.

Service

1

Service

2

Service

3

Centralized coordinator

Service

1

Service

2

Service

3

Distributed

coordinator

Distributed

coordinator

Distributed

coordinator

© Peter R. Egli 2015
26/29

Rev. 2.20

SOAP & WS-* indigoo.com

7. WS-Coordination (3/4)
Example of coordination (1/2):

Source: http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html

App-A

1

Activation

Service

AS-A

Registration

Service

RS-A

Protocol

Service

PS-A Coordinator A

Activation

Service

AS-B

Registration

Service

RS-B

Protocol

Service

PS-B Coordinator B

App-B

Create CC Type Q.

Returns C-A.

2
App-A sends App-B an application message

containing C-A.

3
Create CC passing C-A.

Returns C-B.

4

Register passing Y

and App-A.

Returns Y-A.

5

Register passing Y

and Y-B.

Returns Y-A.

Protocol Y

© Peter R. Egli 2015
27/29

Rev. 2.20

SOAP & WS-* indigoo.com

7. WS-Coordination (4/4)
Example of coordination (2/2):

1. Coordination context creation A:

App-A sends a CreateCoordinationContext for coordination type Q, getting back a Context C-A that contains the activity

identifier A1, the coordination type Q and a PortReference to CoordinatorA's registration service RS-A.

2. Coordination context forwarding:

App-A then sends an application message to App-B containing the Context C-A.

3. Coordination context creation B:

App-B prefers CoordinatorB, so it uses CreateCoordinationContext with C-A as an input to interpose CoordinatorB.

CoordinatorB creates its own CoordinationContext C-B that contains the same activity identifier and coordination type as C-A

but with its own registration service RS-B.

4. Coordination protocol selection:

App-B determines the coordination protocols supported by the coordination type Q and then registers for a coordination

protocol Y at CoordinatorB, exchanging PortReferences for App-B and the protocol service Y-B. This forms a logical

connection between these PortReferences that protocol Y can use.

5. Coordination protocol forwarding:

This registration causes CoordinatorB to forward the registration onto CoordinatorA's registration service RS-A, exchanging

PortReferences for Y-B and the protocol service Y-A. This forms a logical connection between these PortReferences that the

protocol Y can use.

© Peter R. Egli 2015
28/29

Rev. 2.20

SOAP & WS-* indigoo.com

8. WS-MetadataExchange
WS-MetadataExchange defines a protocol for bootstrapping a web service with MEX (Metadata

Exchange = download of the WSDL and other files).

WS-MetadataExchange allows dynamically downloading the following WS metadata files:

a. WS-Policy (XML description of WS capabilities, requirements and general characteristics

like QoS, security etc.).

b. WSDL file (description of WS operations).

c. XML schema (description of messages exchanged with WS).

WS-MetadataExchange uses WS-Transfer as protocol for the transfer / download of the

metadata files.

WCF or WSIT/JAX-WS-based

service

Client proxy

WCF svcutil

or

JAX-WS wsimport

WS-Transfer / MEX

WSDL

Creates

© Peter R. Egli 2015
29/29

Rev. 2.20

SOAP & WS-* indigoo.com

9. SOAP-WS versus REST-WS
SOAP-WS:

 Rather complete (there is a WS-standard for almost every aspect / problem).

 Modular (take what you need and compose your web service architecture).

 Complex (too many different WS-standards with dependencies to each other, difficult to

 find a common base that is supported by all participants).

 Performance penalty due to chatty protocols with large overhead (SOAP).

Applicability / suitability:

Enterprise SOA-architecture which requires security, orchestration, management etc.

REST-WS:

 Simple.

 Fits the bill for most applications?

 No standard, semantics of service mostly described in human readable form, not machine

 processable without description language (e.g. WADL or WSDL 2.0).

 Too simple (missing functionality for advanced services which require coordination etc.).

Applicability:

Simple and isolated access (read) to data / resources.

