
© Peter R. Egli 2015
1/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

INTRODUCTION TO SOAP, WSDL AND UDDI,
THE COMBO FOR BIG WEB SERVICES

PETER R. EGLI
INDIGOO.COM

SOAP / WSDL

© Peter R. Egli 2015
2/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

Contents
1. What is a web service?

2. Web service architecture

3. Web service versus conventional object middleware (e.g. CORBA)

4. SOAP

5. WSDL 2.0

6. UDDI

© Peter R. Egli 2015
3/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

1. What is a web service?
W3C definition of web service (see W3C glossary under http://www.w3.org/TR/ws-gloss/):

"A Web service is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web service in a manner prescribed by its

description using SOAP-messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards."

The key elements are:

 Machine-to-machine communication.

 Machine-processable interface description (WSDL).

 Communication through messages (SOAP) using HTTP as transport protocol.

 XML serialization.

The word 'web' in the term 'web service':

Even though SOAP-WS (sometimes also called 'classical web' services or 'big web services')

are transported in the web's core protocol HTTP, they make very little use of the features and

functions of HTTP.

In fact, SOAP-WS messages may be carried in protocols other than HTTP.

http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/ws-gloss/

© Peter R. Egli 2015
4/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

2. Web service architecture
The combo SOAP+WSDL+UDDI defines a general model for a web service architecture.

SOAP: Simple Object Access Protocol

WSDL: Web Service Description Language

UDDI: Universal Description and Discovery Protocol

Service consumer: User of a service

Service provider: Entity that implements a service (=server)

Service registry: Central place where available services are listed and advertised for lookup

Service

registry

Service

description
Service

description
Service

description

Service

description

S
e
rv

ic
e
 i
n

te
rf

a
c
e

Service

WSDL

Publish

Bind

Find

UDDI

SOAP

The service provider

publishes its service with

UDDI carried in

SOAP-messages.

Service

consumer

Service

provider

UDDI

SOAP

SOAP

The service consumer

looks up a suitable

service using

UDDI carried in

SOAP-messages.

The service consumer

binds to the service

provider by sending

a SOAP-request.

© Peter R. Egli 2015
5/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

3. Web service versus conventional object middleware (e.g. CORBA)
Feature-wise comparison:

Aspect CORBA Web services (SOAP/WSDL/UDDI)

Data model Object model SOAP message exchange model

Client-Server coupling Tight Loose (decoupling through asynchronous messaging)

Location transparency Object references URL

Type system IDL, static + runtime checks XML schemas, runtime checks only

Error handling IDL exception SOAP fault messages

Serialization IIOP / GIOP protocol implemented in ORB User definable formats such as XML, JSON

Parameter passing By reference, by value (value type) By value (no notion of objects)

Transfer syntax CDR used on the wire (binary format) XML used on the wire (Unicode)

State Stateful (server object represents state)
Stateless (no SOAP session, but sessions possible on

application level)

Request semantics At-most-once
No guarantees by SOAP (extensions through

WS-ReliableMessaging)

Registry Interface Repository, implementation repository UDDI / WSDL

Service discovery CORBA naming / trading service, RMI registry UDDI

Language support Any language with an IDL binding Any language

Security CORBA security service
HTTP / SSL, XML signature, additional WS-Security

standards

Firewall Traversal Difficult (CORBA uses arbitrary port numbers) Uses HTTP port 80 (when using HTTP transport binding)

Events CORBA event service
E.g. through message exchange patterns out-only,

Further standards like WS-Eventing

Color coding:

 Comparable / similar functionality Considerable conceptual differences

© Peter R. Egli 2015
6/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

4. SOAP (1/12)
What is SOAP?

SOAP defines some key functions needed in a distributed computing environment, namely:

• One-way stateless message exchange mechanism

• Message processing model (roles, must-understand, intermediary) for SOAP nodes

• Abstract, structured message definition able to run on different serializations

• Definition of bindings to transport protocols (HTTP for firewall traversal, SMTP)

• Extension mechanism through header elements enabling functionality defined in different

XML namespaces such as WS-addressing

• Fault handling model

© Peter R. Egli 2015
7/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

4. SOAP (2/12)
SOAP message exchange mechanism (1/5):

SOAP defines the message structure for the message exchange between a web service

provider and consumer.

SOAP defines the roles SOAP sender and receiver. The basic message model of SOAP is

one-way and stateless, i.e. a sender sends a message to a receiver without retaining state

about the message exchange.

The most common message exchange pattern is request-response between a web service

consumer and provider.

Web service provider and consumer are then both SOAP sender and receiver.

SOAP

sender

SOAP

receiver

SOAP message

Web

service

consumer

Web

service

provider

SOAP request message

SOAP response message

© Peter R. Egli 2015
8/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

4. SOAP (3/12)
SOAP message exchange mechanism (2/5):

The SOAP model defines another entity called intermediary, a node that can be addressed to

perform some particular function such as caching or message filtering.

Web

Service

Consumer

Web

Service

Provider

SOAP request message

SOAP response message

SOAP

Intermediary

SOAP request message

SOAP response message

SOAP

Sender

SOAP

Receiver

Initial SOAP

Sender

Ultimate SOAP

Receiver
SOAP

Intermediary

WS

Consumer /

Provider

Web service consumer (client) and provider (server)

are both initial SOAP sender and ultimate SOAP

receiver because they are positioned at the start and end

of the SOAP message path.

UML view of entities:

SOAP message path

UML: Unified Modeling Language

© Peter R. Egli 2015
9/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

4. SOAP (4/12)
SOAP message exchange mechanism (3/5):

SOAP defines a generic structure of an abstract message.

Elements of a SOAP message:

HTTP POST

SOAP Envelope

SOAP Header

SOAP Body

Header Block

Header Block

SOAP Envelope:

The envelope (=root element of SOAP message) is a container

for the optional SOAP header and the mandatory

SOAP body element.

SOAP Header:

The SOAP header may carry control information which is

not application payload.

Such information is organized in header blocks, each with

its individual XML namespace defining the schema.

The SOAP header is extensible, i.e. arbitrary namespaces with

a particular way of message processing can be "woven" into

the header.

SOAP Body:

The SOAP body carries the actual application information,

encoded as an XML document. The schema of the body is

defined by a WSDL document.

© Peter R. Egli 2015
10/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

4. SOAP (5/12)
SOAP message exchange mechanism (4/5):

A few SOAP header attributes define the processing behavior on SOAP nodes:
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

 <env:Header>

 <m:reservation xmlns:m="http://travelcompany.example.org/reservation"

 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"

 env:mustUnderstand="true"

 env:relay="false"

 env:encodingStyle="http://indigoo.com/exampleEncoding">

 <m:reference>uuid:xxx</m:reference>

 <m:dateAndTime>2012</m:dateAndTime>

 Attribute Description Possible values

env:role
Defines which node along the message path is to process the header

block.

next

none

ultimateReceiver

env:mustUnderstand

Tells if header block must be processed by the targeted SOAP node.

The processing is header block specific (what the SOAP node is

supposed to do depends on the semantics of the header block).

true

false

env:relay

If set to true and env:mustUnderstand is absent or false, an

intermediary SOAP node must forward (relay) the header block if it

does not process it. Otherwise the header block is consumed by the

SOAP node and not forwarded to the next SOAP node.

true

false

env:encodingStyle
Defines the encoding or serialization scheme of the block where it is
present. Default: soap-encoding (XML-encoding)

Any encoding

scheme defined by a

namespace URI.

© Peter R. Egli 2015
11/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

4. SOAP (6/12)
SOAP message exchange mechanism (5/5):

SOAP provides the mapping between application messages defined by a WSDL schema and

physical messages transported over the network.

SOAP abstract

message

SOAP

Serialization

HTTP

engine

Application

Service consumer Service provider

H
T

T
P

P
O

S
T

S
O

A
P

E
n

v
.

S
O

A
P

H
e
a

d
e
r

S
O

A
P

B
o

d
y

Appl. level msg.

defined by WSDL

SOAP data model

(abstract info set)

S
O

A
P

E
n

v
.

S
O

A
P

H
e

a
d

e
r

S
O

A
P

B
o

d
y

SOAP abstract

message

SOAP

Serialization

HTTP

engine

Application

Serialization into a

concrete message

transfer encoding

(XML, MTOM, XOP)

Transport with

a defined transport

protocol

Mapping of application

programming language

calls into abstract info set

Logical interaction

between peers on a

programmatic level

© Peter R. Egli 2015
12/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

4. SOAP (7/12)
SOAP & RPC (1/3):

Initially SOAP was modelled as an XML-based variant of RPC (Remote Procedure Call).

The basic pattern of RPC is request-response.

SOAP now is a generalized message exchange mechanism not mandating a specific message

exchange pattern.

Multiple patterns are possible (in-out = request-response, in-only, out-in etc.).

SOAP V1.2 defines some conventions for modelling the programmatic concept of RPC with

SOAP messages as follows:

Transport binding:

If the SOAP transport binding is HTTP, SOAP RPC maps to HTTP request and response where

the HTTP URI is the address of a SOAP processor.

Message exchange pattern:

SOAP-RPC uses the SOAP-Response message exchange pattern (MEP).

The SOAP specification recommends to map the resource address to the request URI.

© Peter R. Egli 2015
13/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

4. SOAP (8/12)
SOAP & RPC (2/3):

Identification of resource:

SOAP-RPC recommends to identify the resource by both an URI and the name of an operation

plus arguments.

Example:
URI = http://services.indigoo.com/weatherUpdate

getWeatherUpdate(lat="123", long="456")

 The SOAP RPC recommendation proposes to duplicate the resouce identification (URI +

name of operation plus arguments) when using HTTP transport binding for the sake of

compatibility with WWW principles (every resource has its own individual address).

 Here, common programming language constructs are in conflict with web paradigms (every

resource has its own individual address).

 REST is much clearer in this respect and cleanly separates resource identification (URI) from

operation to be performed on the resource (HTTP method).

http://services.indigoo.com/weatherUpdate

© Peter R. Egli 2015
14/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

4. SOAP (9/12)
SOAP & RPC (3/3):

Encoding of request:

The request is modeled as a struct, e.g. an XML fragment whose outermost node is the name

of the RPC method or operation and the contained nodes are arguments as exemplified below:
<w:getWeatherUpdate xmlns:m=http://examples.indigoo.com/weatherService

 env:encodingStyle=http://www.w3.org/2003/05/soap-encoding

 xmlns:w="http://weatherService.indigoo.com/">

 <w:location>

 <w:latitude>47.359169</w:latitude>

 <w:longitude>8.563843</w:longitude>

 </w:location>

</s:getWeatherUpdate>

Encoding of response:

The response data is encoded as an XML struct again.

The return value that is distinguished from other output parameters may be enclosed in a

<result> element:
<w:getWeatherResponse

 env:encodingStyle=http://www.w3.org/2003/05/soap-encoding>

 <rpc:result>w:temperature</rpc:result>

 <w:temperature>12.5°C</w:temperature>

</w:getWeatherResponse>

© Peter R. Egli 2015
15/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

4. SOAP (10/12)
SOAP transport binding (1/2):

The transport binding defines the transport protocol to be used.

The only standardized binding is HTTP. However, other transports such as SMTP (email) are

possible by virtue of the extensible architecture of SOAP.

The HTTP transport binding of SOAP defines 2 possible message exhange patterns (MEP).

a. Simple and safe information retrieval by RPC call:

If a SOAP node simply retrieves information from another SOAP node without altering data

on the queried node (safe method as per HTTP RFC2616 – no side-effects), SOAP recommends

the SOAP-response message exchange pattern.

  Web method = HTTP GET

  SOAP-Response MEP (non-SOAP request, SOAP response)

  No header blocks

RPC

requestor

Non-SOAP request message in HTTP GET

SOAP response message in HTTP response

RPC

responder

2
0

0
 O

K

G
E

T

SOAP

© Peter R. Egli 2015
16/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

4. SOAP (11/12)
SOAP transport binding (2/2):

b. Non-safe RPC call (modification of data on responder/server):

Here, data is updated on the queried node with data carried in a SOAP-request message.

  Web method = HTTP POST (addressing the SOAP processor)

  SOAP Request-Response-MEP (both request and response are SOAP messages)

RPC

requestor

SOAP request message in HTTP POST

SOAP response message in HTTP response

RPC

responder

2
0

0
 O

K

P
O

S
T

SOAP

SOAP

© Peter R. Egli 2015
17/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

4. SOAP (12/12)
SOAP fault element:

SOAP uses the XML fault element as part of the SOAP body to indicate SOAP errors.

The fault element is used to indicate SOAP-level errors (wrong formatting) or application level

errors (e.g. inexistent RPC method called).

Example SOAP message with fault element (invalid method called):
<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>

 <SOAP-ENV:Fault>

 <faultcode xsi:type="xsd:string">SOAP-ENV:Client</faultcode>

 <faultstring xsi:type="xsd:string">

 Failed to locate method (getWeatherUpdte) in class

 (WeatherUpdate) at /usr/local/weatherUpdate.py line 143.

 </faultstring>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

© Peter R. Egli 2015
18/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

5. WSDL 2.0 (1/12)
A WSDL (Web Service Description Language) document has basically 3 purposes with regard

to a web service:

1. Describe the "What"

  XML-based abstract definition of a web service comprising:

 a. Type system used to describe the service meta model

 b. Messages / data types involved in the interaction with the web service

 c. Message exchange pattern(s) used in the interaction with the web service

2. Describe the "How"

  Define „how“ to access the abstract web service through a transport binding

3. Describe the "Where"

  Definition of location(s) where the abstract web service can be accessed.

Concrete SOAP

message body

WSDL

Abstract

message

description

«instanceOf»

WSDL defines the schema

while a SOAP message is an

instance of the WSDL schema.

© Peter R. Egli 2015
19/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

Service interface

"What"

(abstract definition)

Service

implementation

"How" + "Where"

(concrete definition)

types

interfaces

binding

service

endpoint

Logical structure of WSDL document

operations

5. WSDL 2.0 (2/12)
Structure / elements of a WSDL document:

A WSDL 2.0 document is partitioned into an abstract / logical interface description and a

concrete interface implementation part.

<description>

 <documentation

 ...

 </documentation>

 <types>

 definition of types........

 </types>

 <interface>

 <fault ... />

 <operation ...>

 <input ... />

 <output ... />

 <outfault ... />

 </operation>

 ...

 </interface>

 <binding>

 ...

 </binding>

 <service>

 <endpoint ... />

 </service>

</description>

WSDL file (XML)

© Peter R. Egli 2015
20/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

5. WSDL 2.0 (3/12)
Elements of WSDL 2.0 (1/6):

Description:
Description is the top-level element and contains all the other elements plus namespace

declarations.
The targetNamespace attribute denotes the namespace of the web service defined in this

WSDL file.

Example:
<?xml version="1.0" encoding="utf-8" ?>

<description

 xmlns="http://www.w3.org/ns/wsdl"

 targetNamespace="http://greath.example.com/2004/wsdl/resSvc"

 xmlns:tns="http://greath.example.com/2004/wsdl/resSvc"

 . . . >

 . . .

</description>

© Peter R. Egli 2015
21/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

5. WSDL 2.0 (4/12)
Elements of WSDL 2.0 (2/6):

Types:
The types element contains user defined data types, e.g. complex data structures. WSDL uses

XML Schema to define types (XSD syntax).

Type elements are basically „messages“ that are sent between service client and server (in

WSDL 1.1 they are called messages).

Example:
<types>

 <xs:schema

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://greath.example.com/2004/schemas/resSvc"

 xmlns="http://greath.example.com/2004/schemas/resSvc">

 <xs:element name="checkAvailability" type="tCheckAvailability"/>

 <xs:complexType name="tCheckAvailability">

 <xs:sequence>

 <xs:element name="checkInDate" type="xs:date"/>

 <xs:element name="checkOutDate" type="xs:date"/>

 <xs:element name="roomType" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 ...

© Peter R. Egli 2015
22/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

5. WSDL 2.0 (5/12)
Elements of WSDL 2.0 (3/6):

Interface:
An interface is an abstract definition of the web service without details where and how the

service is provided.

An interface describes the allowed operations of the web service and possible errors (faults).

An abstract MEP (Message Exchange Pattern) defines the abstract message exchange flow

without specifying any realization details such as protocols to use.

Operation:
An operation defines input and output data structures (formerly called message in WSDL 1.x)

that constitute a basic service operation (e.g. add an address entry operation to an address

book).

Example:
 <interface name="reservationInterface" >

 <fault name="invalidDataFault" element="igns:invalidDataError"/>

 <operation name="opCheckAvailability"

 pattern="http://www.w3.org/ns/wsdl/in-out"

 style="http://www.w3.org/ns/wsdl/style/iri"

 wsdlx:safe = "true">

 <input messageLabel="In" element="igns:checkAvailability"/>

 <output messageLabel="Out" element="igns:checkAvailabilityResponse"/>

 <outfault ref="tns:invalidDataFault" messageLabel="Out"/>

 </operation>

 </interface>

Abstract MEP

Input and output

arguments

Operation name

© Peter R. Egli 2015
23/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

5. WSDL 2.0 (6/12)
Elements of WSDL 2.0 (4/6):

Fault:

The fault element as part of an (abstract) interface defines possible errors that may be returned

to the client.

Example:
 <fault name = "invalidDataFault" element = "igns:invalidDataError"/>

 ...

 <operation ...>

 ...

 <output ...>

 <outfault ref="invalidDataFault" messageLabel="Out"/>

 ...

Input / Output:
Input and output define input and output messages, respectively.

In the simple case of an in-out message exchange pattern (see MEP), the messageLabel

attribute has the values „In“ and „Out“, respectively. In more complicated MEPs with multiple

input and output messages, additional attributes allow defining the proper sequence of the

messages.

refers to

Declaration of possible

fault of the operation

Definition of fault

© Peter R. Egli 2015
24/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

Concrete MEP to

be used

SOAP over HTTP

binding

5. WSDL 2.0 (7/12)
Elements of WSDL 2.0 (5/6):

Binding:
For an abstract service interface, the binding defines the concrete message format and

transport protocol (how the service can be accessed).

The binding must be defined for every operation, thus every operation defined as part of an

interface is referenced in the binding element.

Example:

<binding name="reservationSOAPBinding"

 interface="tns:reservationInterface" type="http://www.w3.org/ns/wsdl/soap"

 wsoap:protocol="http://www.w3.org/2003/05/soap/bindings/HTTP/">

 <operation ref="igns:opCheckAvailability"

 wsoap:mep="http://www.w3.org/2003/05/soap/mep/soap-response"/>

 <fault ref="tns:invalidDataFault" wsoap:code="soap:Sender"/>

</binding>

N.B.: The concrete MEP …/mep/soap-response is concrete from the WSDL point of view because abstract

messages defined by WSDL are mapped to a concrete SOAP MEP.

From the SOAP point of view, however, the MEP is abstract and in turn is mapped to a concrete transport

protocol, most probably the HTTP binding (see above).

© Peter R. Egli 2015
25/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

5. WSDL 2.0 (8/12)
Elements of WSDL 2.0 (6/6):

Service:
The service element defines where a service can be accessed.

A service element contains a single interface attribute that defines which abstract interface the

service implements. Furthermore, a service contains 1 or multiple endpoint elements that

define where this interface can be accessed. N.B.: The „how“ is defined in the binding.

Example:
<service name="reservationService" interface="tns:reservationInterface">

 <endpoint name="reservationEndpoint"

 binding="tns:reservationSOAPBinding"

 address ="http://greath.example.com/2004/reservation"/>

</service>

Endpoint:
An endpoint defines a „Service Access Point“ under which the web service can be accessed.

It defines a name, a binding and an address (=URL).

© Peter R. Egli 2015
26/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

5. WSDL 2.0 (9/12)
The WSDL 2.0 infoset defines the elements and their relationship including cardinality:

Source: http://www.w3.org/TR/wsdl20-primer/#WSDL-PART2

„What“

„How“

„Where“

© Peter R. Egli 2015
27/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

5. WSDL 2.0 (10/12)
WSDL 1.1 versus 2.0:
WSDL 2.0 integrates the message element in the types element and renames portType to

interface and port to endpoint, respectively.

Additionally, the top-level element was changed from definitions (WSDL 1.1) to

description (WSDL 2.0).

Service interface

"What"

(abstract definition)

Service

implementation

"How" + "Where"

(concrete definition)

types

interfaces

binding

service

endpoint

WSDL 2.0 document

operations

Service interface

"What"

(abstract definition)

Service

implementation

"How" + "Where"

(concrete definition)

types

portType

binding

service

port

WSDL 1.1 document

operations

 message

© Peter R. Egli 2015
28/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

5. WSDL 2.0 (11/12)
WSDL message exchange patterns (MEP):

MEPs define how and in which cardinality messages are exchanged.

WSDL 2.0 defines 8 MEPs that cover the most common use cases including ServerClient, but

additional MEPs may be defined and used by a web server where the need arises.

In-only:

The consumer only sends an outbound message, but does not receive a response message.

Robust In-Only:

Same as In-Only, but service may trigger a fault and thus send back a message with a fault.

In-Out:

This is equivalent to request-response. A standard two-way message exchange where the consumer sends a message, the

provider responds with a message or fault and the consumer responds with a status.

In Optional-Out:

A standard two-way message exchange where the provider's response is optional.

Out-Only:

The service operation produces only an outbound message and cannot trigger a fault.

Robust Out-Only:

Similar to Out-Only, but the service may trigger a fault.

Out-In:

The service produces an outbound message first which is followed by an inbound message.

Out-Optional-In:

Same as Out-In, but inbound message is optional.

© Peter R. Egli 2015
29/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

5. WSDL 2.0 (12/12)
Comparison of WSDL with conventional middleware IDL file:

WSDL is similar to an IDL file (e.g. CORBA) in that it describes the operations and parameters

with data types that are part of the interface.

There are, however, some notable differences between WSDL and IDL:

1. IDL files do not specify location of the service

The location (e.g. URL) must be hardcoded in the client or passed through some other means

to the client (e.g. command line arguments).

2. IDL files have a fixed binding to a transport protocol

Usually an IDL is bound to a specific transport protocol, namely TCP.

3. IDLs do not specify sequences of method calls

IDLs usually only define interface and operations (=methods in IDL-speak) that can be called on

these interfaces or classes. Sets of operations cannot be specified (IDL file only specifies

individual operations, but does not allow to specifiy sequences of operations).

WSDL defines request – response pairs of messages.

© Peter R. Egli 2015
30/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

6. UDDI (1/2)
The idea of UDDI:

UDDI was conceived as a universal business registry similar to search engines (Google et. al.)

where services can be located based on different criteria.

Servers that provide public UDDI registry and lookup service are called nodes.

An UDDI business registration provides 3 distinct sets of information:
White Pages Address, contact, and known identifiers.

Yellow Pages Industrial categorizations based on standard taxonomies.

Green Pages Technical information about services exposed by the business.

The vision was that service consumers would be linked to service providers through a public

brokerage system.

The reality of UDDI:

UDDI did not gain widespread use as yet even though it had the backing of large companies

like IBM and Microsoft.

UDDI is mostly used in limited environments (inside companies). For that purpose, UDDI is too

complicated and most of the data provided by UDDI is not needed.

Microsoft, IBM and SAP shut down their public UDDI nodes (servers) in 2006.

© Peter R. Egli 2015
31/31

Rev. 2.00

SOAP - WSDL - UDDI indigoo.com

6. UDDI (2/2)
UDDI interfaces:

UDDI defines a set of interfaces for accessing the UDDI registry.

UDDI Inquiry  Lookup services

UDDI Publication  Publish and modify published services

UDDI Security  Define access control of published services

UDDI Custody Transfer  Change the ownership of information in the registry and move a

 publication to a different node

UDDI Subscription  Subscribe to changes of information in the UDDI registry

UDDI Replication  Functions for replicating registry entries between UDDI nodes

